
Visualization and Interactivity Methods to Improve the First-Year

Computer Science Learning Environment

Literature Review

Siviwe Qolohle
 Department of Computer Science

 University of Cape Town

 Cape Town Western Cape

qlhsiv001@myuct.ac.za

ABSTRACT

Learning how to program is often a daunting task for first-year

university students with no prior coding experience. The skill of

coding often viewed as too abstract to grasp for first, hence

discouraging them from continuing with the course. With the

demand for individuals with programming skills in the workplace

increasing, it is urgent for the negative mindset associated with

computer science to be corrected. This literature review explores

different programming learning environments that are beginner

friendly. It examines how visualization and interactivity are used

to enhance the learning environment for first years and simplify

coding concepts. Between Interactivity and Visualisation, the

paper finds that Interactivity and Visualisation go hand in hand,

with the feature of Interactivity is more crucial for first-year

students. The review finds that previously created system may be

too complex for first years and hence, investigates ways to adapt

previous systems to make learning easier for first years.

CCS CONCEPTS

• Computer Science • Debugging • Programming

KEYWORDS

Programming, Visualisation, Teaching, Interactivity

1 INTRODUCTION AND MOTIVATION

One of the courses that make a first-year’s transition from high

school to varsity even more challenging is Computer Science.

Many students are not taught to program in high school.

Introductory Programming therefore has a critical role to play, to

ease first-year students into Computer Science, without

overwhelming them whilst developing a firm programming

foundation at the same time.

The Demand for programming in the labour market is increasing

[12]. Programming skills are not only required in degrees related

to computer science, but they are also required in many other

disciplines [11]. There is, however, a shortage of programmers

because students have a preconceived idea of programming being

difficult and hence do not want bother learning the skill [12].

With students doing introductory programming courses, their

failure to understand the courses can be seen by the failure of

students to grasp the fundamental skills of programming [11].

There are high failure rates within the introductory programming

courses [5]. Computer Science is described as a subject that really

challenges the mind and requires the mastery of problem-solving

skills [2]. Many first years arrive at university without having

mastered or efficiently exercised the skill of problem solving [2,

9]. This is an issue seeing that problem solving makes up the

foundation of programming. Incorporating more visualization and

interactivity in the teaching of computer has been proven to

enhance the learning experience for students and improve their

understanding of the basics of Computer Science [12].

This literature review aims to provide an overview of why first-

year students struggle when learning the basics of programming

and it aims to discover effective teaching methods which can be

used for first-year students to ease them into the subject of

computer science. The literature review also aims to provide an

overview of systems which have already been implemented that

make use of visualization and interactivity to improve

understanding within introductory programming courses. These

systems will also be adapted to check and enhance the problem-

solving skills of first-year computer science students.

2 LEARNING COMPUTER SCIENCE

2.1 Challenges

2.1.1 Problem Solving Skills. Programming requires logical skills

and computational skills [2]. The major goal of first year

programming courses is to develop and a student’s problem-

solving skills and for them to learn a programming language that

allows them to code the solutions to the problems that they have

just solved [2]. The Programming requires in-depth problem-

solving skills that many first-year students may not have acquired

yet [2]. When students arrive at university their problem-solving

skills do not improve quick enough because when lecturers teach,

they provide solutions to the problems they give students instead

of equipping them with the problem-solving skills to solve all

 .

problems of that kind [18]. Spoon-feeding students answers

during class does not help students master the basics which give

them the ability to solve problems on their own. When teaching

programming to first-years problem should be classified into types

and solutions to the type of problem should be specified. For

example, classifying the types of problems requiring ‘while loops’

or ‘if-statements”. This is, however, only applicable to

introductory programming courses because solutions to more

difficult computer science courses combine the above stated

solutions into one programming consisting of ‘while loops’, if-

statements and ‘for loops’.

2.1.2 Lack of Assistance. For a first-year student with no prior

coding experience, not having easy access to assistance is also a

problem. Struggling with a problem and needing to wait for a long

time for assistance from an educator can be demotivating for a

student. The problem the student faces appears as an obstacle

they cannot pass due to lack of assistance [12]. This is even more

likely for a student that has no background on a subject and does

not even know where to start when looking for supplementary

resources (such as videos) for assistance.

2.1.3 Grasping the Basics. It is difficult to initially get an idea of

what programming is about because it is so different to other

subjects students learn in high school. In this case individualized

learning is ideal but is not practical due to the large of students

learning how to program [2]. Learning a programming language

itself is also challenging as each language comes with its own

syntax rules [5]. This means that on top of improving problem

solving skills and using code to solve those problems, a language

must also be learned to deliver that solution. Students are also

often required to make use of content from other subjects when

coming up with solutions to raised problems. This content can

include mathematical and scientific formulae [2]. Gasparintatou

and Grigoriadou [1] state that it has been discovered that

providing students who have little to no experience in

programming with highly cohesive text. Text that is highly

cohesive and hence more comprehensive help sets a firmer

foundation for students for the content they are learning.

2.1.4 Lack of Engagement. Learning how to code requires

constant engagement [2]. Taking into account that first years

have a lot courses that they are doing at once, constant

engagement is a difficult requirement to meet. Making the

application fun would assist in ensuring that students are working

on improving their skills in their own time. A Research was

conducted which tested students’ academic performance after they

made use of the game that was created to teach them computer

science. The results indicated that incorporating entertainment

into the learning experience improves students’ academic

performance [16].

2.2 Effective Teaching Methods for Programming

One of the new methods which are being used to teach students is

Live-Coding [4]. This form of teaching consists of a teacher

writing code in front of students and allowing students to ask

questions as they write the code [12]. It is preferred by students

as it allows students to be more involved in the learning process,

seeing that they are able to stop the teacher at any time and ask

them a question whilst they are writing the code [4]. Students are

also able to get a glimpse into the teachers thought process and

learn from their teacher’s mistakes [4]. When devising a solution

to a problem using programming, educators should be intentional

about showing students their thought process (rather than making

use of slides that already have solutions on them) [3]. This allows

a student to apply their educator’s thinking pattern when faced

with a similar problem [3]. This can also allow the student to

categorize certain solutions to certain types of problems.

From a study conducted with students who were learning

computer science, they were asked about which teaching methods

they think are most effective for computer science [9].

Laboratory practice and projects were placed first and second

respectively, with lectures being placed third. laboratory practice

allows students to put their lessons in effect to test whether or not

they understood the content they were taught [9]. Laboratory

practice also allows students to get the out from their input

immediately, which assists in speeding up the learning process.

Projects assign tasks to the students [9]. The students believed

that the projects ensure that students have a proper understanding

of the content and they stated that it assisted them in mastering the

required computer science skills. Projects and laboratory

practices can hence combat the effects of lack of Engagement.

3 VISUALISATION

Visualisation plays a critical role in understanding and teaching

programming. It helps students graphically understand how a

program works) [15]. Visualization helps the student visualize

variables as well as how those variables interact with other

variables [7]. Visualisation also helps the user see how objects

are affected by sequences of instructions [7]. With visualization

we can see how an algorithm works graphically [3]. Seeing that

interactivity and visualisation often go hand-in-hand, in this

review visualization refers to a student viewing content, and being

able to have little (pressing next as the code is executed line by

line) to no interaction.

3.1 Systems Using Visualisation

3.1.1 Improv. Live-coding is a clear example of incorporating

visualization into the teaching process, in computer science.

Live-coding led to the development of Improv[4]. In this

application, the teacher writes and tests code in any language

using an IDE. Improv is used to attach shortcuts to the IDE which

allow the terminal or block of code to be displayed in a

PowerPoint-like style set of slides. This is all done live, meaning

as the educator is teaching and typing the code, it is being

displayed in the above stated format. Components such as text

and images can be appended to these slides. Studies have found

that it is important to for students to see code being written and to

see the effects of their ‘what-if’ questions [4]. Improv allows for

multiple editable files to be open at once. On one slide, multiple

editors can be edited. For example, the backend and front end of

a code can be displayed on the same slide as well as the output to

see how certain changes in the code of the backend and the

frontend affect the output. The versatility of the application caters

to different types of teaching methods in which educators would

like to teach their programming content. The platform makes it

easy for students to quickly grasp concepts [4].

After giving students the opportunity to learn using Improv it was

found that the lack of required context switching resulted in a

reduction of their cognitive load [4]. When it comes to coding,

context switching (switching between different windows, or

having multiple windows occupy different parts of the screen) can

have a negative impact on the learning process and can increase

the time it takes for one to grasp a concept. It affects

concentration and can result in one reading over a block of code

multiple times. Navigating through multiple windows makes it

easy get lost and confused as a presenter, making it worse for the

viewers [4]. Pre-made slides also require context switching as the

lecturers usually need to open a new window the display what

they have just discussed on the slides. Presenters also sometimes

must switch between the IDE and the terminal to show the code as

well as the output it provides from a given input. To visualize the

output, context switching is usually required [4].

Figure 1: UUhisle Controlled Viewing mode.

3.1.2 UUhistle. UUhistle is a program written in Java, that has

both a predominantly visual mode and interactive mode (see

figure 1) [10]. The program can be run on its own or on the web.

The predominantly visual mode is referred to as Controlled

Viewing and it allows the user to observe as the program executes

showing the different steps the program follows. The code is

displayed on the left (with the current line highlighted). On the

right side are the components which make up the program, these

components include the classes, variables, functions, and

operators. As each line is executed, the changes to variables are

visualised as well as the steps taken when a method is called by a

variable. The changes made by each transition to the next line are

displayed on the right. In the Controlled Viewing state the user

can also make use of buttons such as Stop, Rewind, Undo and

Next Step as the lines execute.

Figure 2: Online Python Tutor

3.1.3 Online Python Tutor. Online Python Tutor is a Python

visualization program based on the web (see Figure 2 above) [13].

Students struggle to understand how a block of code links to a

process that can cause multiple changes to an object [13]. The

program can be seen as a simpler version of the Controlled

Viewing mode of UUhistle. The program allows the user to step

forwards and backwards through the code line by line. The

interface displays the code, the output, and a visualization of each

transition to a new line, all on the same page. The success of the

program can be seen by the fact that the program is used in first-

year Computer Science courses in many universities [13]. These

universities include MIT, University of Washington, and UC

Berkeley. In 2013 it was reported that over 30,000 individuals

use Online Python Tutor per month [13].

4 INTERACTIVITY

Interactivity also plays a crucial role when learn how to code. It

allows students to not only visualize their code as well as its

effects, but it also allows the user to fully interact with it and gives

students. Often interaction also includes giving students

intrcutions to write code [12]. Past experiments which will be

further elaborated on below actually prove that interactivity may

be more effective than visualization.

4.1 Systems or experiments using interactivity.

An experiment was conducted determining the effects of an

interactive programming application on the success rate of

students in programming [12]. The application consisted of

several activities. An example of an activity the application

 .

would provide is giving the student a scenario where an individual

is given a few objects (for example, 5 apples), and the student is

then tasked to store the objects in a basket. The solution to this

task should be provided using a line of code. the expected

solution to this problem is: “int basket = 5” (if the program was

being written in Java). This example teaches the student about the

basics of variables. Other features are also included such as

hovering over a line of code, and having the application display a

description of the syntax of the highlighted area. In the

experiment, students get taken through the process of developing

functions and they are also given the opportunity to play games.

Some games in the application consisted of puzzles where the

students would the line of code in its correct position. To ensure

user’s skills are constantly improving, the users are taken through

different levels where the code is appended to each time you reach

a higher level. Real-life scenarios are used to give the student a

clear idea of how the code should be created. This experiment

assisted in enhancing critical thinking and problem-solving skills

[12].

Two experiments were conducted mainly focusing on the

importance of using interactivity when learning programming.

One of the experiments conducted was to determine the impact of

constructing visualizations of sorting algorithms on students’

understanding and attitude towards programming [6]. They went

in with some programming knowledge and they were also taught

about graphics and animation design. The research mainly

focused on determining the effect of viewing pre-made

visualizations vs creating your own visualizations. The topics

were centered around sorting algorithms. It was found that

constructing your own algorithms improved students’

performance. Interactivity increases students’ understanding.

Students indicated that constructing the algorithms themselves

helped make the code more concrete for them.

The other experiment investigated the impact of sorting numbers

using physical index cards [8]. The goal was to prove the

effectiveness of low-tech solutions compared to simple code walk

through. the usage of index cards produced a deeper

understanding of the sorting algorithms. The sorting of digits

using cards can be transformed into program by simply using a

drag and drop feature.

Figure 3: UUhistle VPS mode

The second mode of UUhistle is a Visual Program Simulation

(VPS) (see figure 3) [10]. In this mode, the student takes on the

role of the computer. The objective of this mode is to give the

student a deeper understanding of what the computer does when a

program is run. In other words, in the VPS mode, the student

manually does the changes observed on the right-hand side of the

Controlled Viewing (figure 1) mode in each line of code. When a

method is created, the user is expected to store it in memory;

when the method is called by a variable, it is the user’s

responsibility to drag the function and enter the required

parameter (as with the Controlled Viewing mode, the stored

method is displayed on the right side of the screen).

5 COMPREHENSIVE ERROR MESSAGES

When creating an educational programming application, a lot of

time needs to be spent on determining how the application

responds to errors made by the user. The ability to detect errors in

code is crucial for beginner programmer for them to succeed

programming. Error messages have the potential to greatly guide

and assist first in learning how to code [14]. However, the error

messages are currently too difficult to comprehend for beginner

programmer [14].Python’s error messages can be difficult to

understand for a first-year programmer, for example, getting the

following message: “Syntax Error” can be difficult to comprehend

because a first-year may not even know what the word syntax

means in programming. Some syntax errors may not even come

with further explanation. Due to inefficient error message

someone may struggle for hours to find why their program keeps

giving them an error message only to find out that they misspelt

their variable [17]. TigerJython is a python environment that

makes use of more comprehensive error message [17]. The

environment prints the error message in the shell as well as

explains the error or makes a suggestion under the line of code

that is giving the error. Students were asked to rate from 1 to 5

the effectiveness of TigerJython when it comes to error messages.

The average rating was 3.3. The students were either high school

students or first year beginner programmers. When examining the

results of students using the program, it was found that a third of

the errors experienced by the students were insignificant syntax

errors.

UUhistle also allows students to make mistakes so they can learn

from them. The program reacts to the error by suggesting that the

user undo or fix the error [10].

6 DISCUSSION
Seeing that many students struggle to initially grasp the basics of

computer science, this highlights that the starting point for the

course is too high or advanced for students. It has also been found

from past research that there is a lack in the problem-solving skills

among students [2]. Grasping the basics of coding makes students

more qualified to solve problems on their own, resulting in

improved problem solving skills. To assist students, the gap must

be bridged between high school and university. The goal of the

educators should be focusing on using programming to improve

problem solving skills. The goal should not only be to teach

programming. It can be seen from previous articles that jumping

straight into programming is not working for students. It was

stated that when learning a new skill, beginners learn better from

comprehensive text. This implies that prior to asking a student to

write code, a comprehensive description of the topics the students

will be making use of in that code should be explained. For

example, prior to asking students to use an array in a code, an in-

depth explanation of the purpose of arrays as well as how they can

be used should be given. Although the systems which have been

touched on above have proven to be effective when it comes to

assisting students, they do not give descriptions of the topics

within computer science. Attempting to incorporate lessons into

an application which assists student with learning to program

which includes interactivity could be too ambitious, however it

would be possible to give brief description of a topic prior to

asking students to write a program. Incorporating this could help

students fully grasp the basics of programming.

From past experiments and learning systems which are in use, it

can be observed that visualization and interactivity Often go hand

in hand. Although this literature review separated visualisation

and interactivity into two different categories, most often,

visualisation (when it comes to programming), does not come

without a little bit of interactivity. For example, stepping through

a code line by line counts as a form of interactivity. Although

visualisation is important, as it helps students graphically

understand a program and also allows students to see how

variables act with each other, being intentional about

incorporating a lot of interactivity is crucial [6, 7, 8, 15]. This is

highlighted by the experiment which outlined that writing a

program is better than viewing one [6]. Another experiment

which highlighted this was the one that outlined that when

learning sorting, physically sorting through digits is better than

observing a sorting algorithm [8]. The importance of the

inclusion of interactivity is also highlight by the fact that from a

survey asking students to state preferred learning methods,

laboratory practices and projects were the top two methods [9]. It

is evident though that from the systems focusing mainly on

visualisation and those focusing mainly on interactivity, that

having a feature that allows students to step through code line by

line and see the effect of each line, is crucial.

When it comes to the visuals, a lot can be learned from UUhistle,

Improv and Online Python Tutor. All the programs display all of

their features on one interface in order to avoid context switching.

As described above, avoiding context switching greatly benefits

the learner. The code, the output of the code and additional

descriptions and explanations are on one page. The Improv

interface may however be too complicated for a first-year student

meaning UUhistle and Online Python Tutor would have the ideal

layout.

Constant engagement has been stated as being crucial when it

comes to learning how to program [2]. Some papers did stress on

the effectiveness of incorporating entertainment into the program

to make it more appealing to the student, and hence, increase

engagement [16]. Incorporating entertainment does however

seem ambitious when the focus is interactivity and visualization.

Focusing on making the design and layout more appealing to

students can however assistance in attracting students to the

application.

When creating a visualization and interactivity program allowing

students to make errors is important. Having simple and cohesive

error messages is also crucial [14, 17]. As touched on above,

when a beginner programmer encounters an error in their code,

they can become extremely discouraged because often they may

not even know where to begin the debugging process. Receiving

a complicated error message only makes things worse for the

beginner. Therefore, providing additional assistance in the form

of cohesive error messages as well as suggestions for the user can

be extremely beneficial.

7 CONCLUSION

This literature review touched on the teaching of introductory

Computer Science courses. It highlighted the issues which result

in a large volume of students fearing and not coping in the

courses. It highlighted how lack of problem-solving skills, lack of

engagement and not having grasped the basics contributes to the

high failure rate of first years Computer Science. It also touched

on effective teaching methods that can be implemented to teach

students. Such methods include making use of Live-Coding as

well as projects and laboratory practical.

Although the collected literature does give an idea of how

applications to teach students about the basics of computer

 .

science, more can be incorporated. The additional features should

focus more on comprehensively teaching basics. Along with

improving programming skills this would also improve the

problem-solving skills which many first-years are lacking.

Focusing on improving basics gives students more independence

in the sense that they do not have to depend on memorizing rules

of regarding when a certain statement or function should be used.

Having more of a solid foundation makes knowing which syntax

to use more intuitive.

 From the literature, it has been found that multiple features need

to be included in an introductory programming application. One

of the features are having information on one page to reduce

context switching. This feature should obviously be implemented

in such a way that the student is not too overwhelmed by the

abundance of content. Another feature is appropriate error

handling. This includes suggestions of how to fix errors as well

as descriptions explaining the error. Other features are an

appealing layout, visualization and a lot of interactivity. The final

feature is an educative one that gives brief descriptions of

programming rules.

REFERENCES

[1] Alexandra Gasparinatou and Maria Grigoriadou. 2011. Supporting

students. Computer Science Education 21, 1 (2011), 1-28. DOI:

https://doi.org/10.1080/08993408.2010.509909

[2] Anabela Gomes and António José Mendes. 2007. An environment to

improve programming education. In Proceedings of the 2007

international conference on Computer systems and technologies

(CompSysTech '07). Association for Computing Machinery, New York,

NY, USA, Article 88, 1–6. https://doi-

org.ezproxy.uct.ac.za/10.1145/1330598.1330691

[3] Arnold Pears, Stephen Seidman, Lauri Malmi, Linda Mannila, Elizabeth

Adams, Jens Bennedsen, Marie Devlin, and James Paterson. 2007. A

survey of literature on the teaching of introductory programming. In

Working group reports on ITiCSE on Innovation and technology in

computer science education (ITiCSE-WGR '07). Association for

Computing Machinery, New York, NY, USA, 204–223. https://doi-

org.ezproxy.uct.ac.za/10.1145/1345443.1345441

[4] Charles H. Chen and Philip J. Guo. 2019. Improv: Teaching

Programming at Scale via Live Coding. In Proceedings of the Sixth

(2019) ACM Conference on Learning @ Scale (L@S '19). Association

for Computing Machinery, New York, NY, USA, Article 9, 1–10.

https://doi-org.ezproxy.uct.ac.za/10.1145/3330430.3333627

[5] G. Silva-Maceda, P. David Arjona-Villicaña and F. Edgar Castillo-

Barrera, "More Time or Better Tools? A Large-Scale Retrospective

Comparison of Pedagogical Approaches to Teach Programming," in

IEEE Transactions on Education, vol. 59, no. 4, pp. 274-281, Nov.

2016, doi: 10.1109/TE.2016.2535207

[6] Ibrahim Cetin & Christine Andrews-Larson (2016) Learning sorting

algorithms through visualization construction, Computer Science

Education, 26:1, 27-43, DOI: 10.1080/08993408.2016.1160664

[7] Imre BENDE. 2022. Data Visualization in Programming Education.

Acta Didactica Napocensia 15, 1 (2022), 52-60. DOI:

https://doi.org/10.24193/adn.15.1.5

[8] J Geller and R Dios 1998. A low-tech, hands-on approach to teaching

sorting algorithms to working students, 89-103. https://doi-

org.ezproxy.uct.ac.za/10.1016/S0360-1315(98)00021-9

[9] J. Kingsley Arthur and K. Sarpong Adu-Manu. Causes of Failure of

Students in Computer Programming Courses: The Teacher Learner

Perspective” in International Journal of Computer Applications

77(12):27-32, Sept. 2013, doi: 10.5120/13448-1311

[10] Juha Sorva and Teemu Sirkiä. 2010. UUhistle: a software tool for visual

program simulation. In Proceedings of the 10th Koli Calling

International Conference on Computing Education Research (Koli

Calling '10). Association for Computing Machinery, New York, NY,

USA, 49–54. https://doi-

org.ezproxy.uct.ac.za/10.1145/1930464.1930471

[11] Michael McCracken, Vicki Almstrum, Danny Diaz, Mark Guzdial,

Dianne Hagan, Yifat Ben-David Kolikant, Cary Laxer, Lynda Thomas,

Ian Utting, and Tadeusz Wilusz. 2001. A multi-national, multi-

institutional study of assessment of programming skills of first-year CS

students. SIGCSE Bull. 33, 4 (December 2001), 125–180. https://doi-

org.ezproxy.uct.ac.za/10.1145/572139.57218

[12] Prasad, A. et al. (2022) Programming skills: Visualization, interaction,

home language and problem solving. Education and information

technologies. [Online] 27 (3), 3197–3223.

[13] Philip J. Guo. 2013. Online python tutor: embeddable web-based

program visualization for cs education. In Proceeding of the 44th ACM

technical symposium on Computer science education (SIGCSE '13).

Association for Computing Machinery, New York, NY, USA, 579–584.

https://doi-org.ezproxy.uct.ac.za/10.1145/2445196.2445368

[14] Rachel D'souza, Mahima Bhayana, Marzieh Ahmadzadeh, and Brian

Harrington. 2019. A Mixed-Methods Study of Novice Programmer

Interaction with Python Error Messages. In Proceedings of the Western

Canadian Conference on Computing Education (WCCCE '19).

Association for Computing Machinery, New York, NY, USA, Article

15, 1–2. https://doi-org.ezproxy.uct.ac.za/10.1145/3314994.3325090

[15] Šimoňák, Slavomír..2014 "Using algorithm visualizations in computer

science education" Open Computer Science, vol. 4, no. 3, pp. 183-190.

https://doi.org/10.2478/s13537-014-0215-4

[16] Tsung-Yu Liu. 2014. Using educational games and simulation software

in a computer science course: learning achievements and student flow

experiences. Interactive Learning Environments 24, 4 (2014), 724-744.

DOI:https://doi.org/10.1080/10494820.2014.917109

[17] Tobias Kohn and Bill Manaris. 2020. Tell Me What's Wrong: A Python

IDE with Error Messages. In Proceedings of the 51st ACM Technical

Symposium on Computer Science Education (SIGCSE '20). Association

for Computing Machinery, New York, NY, USA, 1054–1060.

https://doi.org/10.1145/3328778.3366920

[18] William M. Waite. 2006. The compiler course in today's curriculum:

three strategies. SIGCSE Bull. 38, 1 (March 2006), 87–91. https://doi-

org.ezproxy.uct.ac.za/10.1145/1124706.1121371

https://doi.org/10.1080/08993408.2010.509909
https://doi-org.ezproxy.uct.ac.za/10.1145/1330598.1330691
https://doi-org.ezproxy.uct.ac.za/10.1145/1330598.1330691
https://doi-org.ezproxy.uct.ac.za/10.1145/1345443.1345441
https://doi-org.ezproxy.uct.ac.za/10.1145/1345443.1345441
https://doi.org/10.24193/adn.15.1.5
https://doi-org.ezproxy.uct.ac.za/10.1145/572139.57218
https://doi-org.ezproxy.uct.ac.za/10.1145/572139.57218
https://doi-org.ezproxy.uct.ac.za/10.1145/2445196.2445368
https://doi-org.ezproxy.uct.ac.za/10.1145/3314994.3325090
https://doi.org/10.2478/s13537-014-0215-4
https://doi.org/10.1145/3328778.3366920
https://doi-org.ezproxy.uct.ac.za/10.1145/1124706.1121371
https://doi-org.ezproxy.uct.ac.za/10.1145/1124706.1121371

